Incorporating a class of constraints into the dynamics of optimal control problems
نویسندگان
چکیده
A method is proposed to systematically transform a constrained optimal control problem (OCP) into an unconstrained OCP, which can be treated in the standard calculus of variations. The considered class of constraints comprises up to m input constraints and m state constraints with well-defined relative degree, where m denotes the number of inputs of the given nonlinear system. Starting from an equivalent normal form representation, the constraints are incorporated into a new system dynamics by means of saturation functions and differentiation along the normal form cascade. This procedure leads to a new unconstrained OCP, where an additional penalty term is introduced to avoid the unboundedness of the saturation function arguments if the original constraints are touched. The penalty parameter has to be successively reduced to converge to the original optimal solution. The approach is independent of the method used to solve the new unconstrained OCP. In particular, the constraints cannot be violated during the numerical solution and a successive reduction of the constraints is possible, e.g. to start from an unconstrained solution. Two examples in the single and multiple input case illustrate the potential of the approach. For these examples, a collocation method is used to solve the boundary value problems stemming from the optimality conditions. Copyright q 2009 John Wiley & Sons, Ltd.
منابع مشابه
A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملPERFORMANCE BASED OPTIMAL SEISMIC DESIGN OF RC SHEAR WALLS INCORPORATING SOIL–STRUCTURE INTERACTION USING CSS ALGORITHM
In this article optimal design of shear walls is performed under seismic loading. For practical aims, a database of special shear walls is created. Special shear walls are used for seismic design optimization employing the charged system search algorithm as an optimizer. Constraints consist of design and performance limitations. Nonlinear behavior of the shear wall is taken into account and per...
متن کاملA Novel Successive Approximation Method for Solving a Class of Optimal Control Problems
This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...
متن کاملSolving optimal control problems by PSO-SVM
The optimal control of problem is about finding a control law for a given system such that a certain optimality criterion is achieved. Methods of solving the optimal control problems are divided into direct methods and mediated methods (through other equations). In this paper, the PSO- SVM indirect method is used to solve a class of optimal control problems. In this paper, we try to determine t...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009